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Abstract. The method of ‘damage spreading’ is used to measure the dynamic exponent z 
for both the two- and three-dimensional lsing models with heat bath dynamics. We also 
measure a new exponent a describing the rate at which a damage cloud grows. We report 
values of z = 2.24* 0.04 and a = 0.77 * 0.1 1 in two dimensions, and z = 2.202 f 0.03 and 
a = 0.92 f 0.10 in three dimensions. 

‘Damage spreading’ is a useful method for determining the onset of chaotic behaviour 
in the Kauffman cellular automata and related problems [ 1,2]. This method involves 
the study of the time development of the differences, or ‘damage’, between two systems 
which are nearly identical at some time t = to ,  and which are subsequently subjected 
to the same set of dynamics and evolutionary constraints. Since both systems are 
subjected to the same set of constraints and dynamics then the damage, if any, which 
develops between them as they evolve, is due to the initial perturbation by which the 
two systems were not completely identical at t = to. This form of analysis may be 
considered as a careful experiment, albeit a computer experiment, in which there is a 
‘control’ system and a ‘subject’ system which only differ due to the introduction of 
some perturbation. Since this a computer experiment, it is possible to ensure that all 
events in the evolution of both systems before and after the perturbation is introduced, 
are identical. For example, in an Ising model, this would mean using the same dynamics, 
the same sequence of random numbers, and updating sites in the same order, in two 
systems which are initially different by only the value of one spin. In such a case, it 
is possible in the computer to isolate and trace the full influence of an initial perturbation 
on the evolution of the system. 

Consider damage spreading as applied to the Kauffman model. The set of rules 
that govern the evolution of each site is selected with a preset probability p ,  from the 
216 rules that are possible for each site on the square lattice with nearest-neighbour 
interactions. A clone is made of this system with identical rules on all the sites, apart 
from a special s i te j  where the rules are different between the two systems. It is possible 
to study how these two nearly identical systems evolve away from the same initial spin 
configuration. The standard questions considered are as follows. ( i )  Will the initial 
damage create an effect at the extremities of the system, or will it be localised? That 
is, is the system chaotic in the sense that two nearby points in the systems phase space 
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will remain close together or move in independent trajectories? (ii) What is the rate 
of spread of damage? (iii) How many sites are infected on average as a function of time? 

The method of damage spreading has also been applied to equilibrium thermo- 
dynamic systems [3,4]. Coniglio et a1 [ 5 ]  showed that if an initial perturbation is 
defined appropriately in a ferromagnetic Ising model, then the subsequent damage 
could be analysed to give well known static equilibrium properties. As an example 
consider two identical copies of an Ising model, labelled A and B, in dimension d = 2 
at a temperature T. Damage is introduced at the boundaries of the system by setting 
the boundary spins of system A permanently up, while keeping those of system B 
permanently down. Initially all other spins in both systems are in identical states. The 
systems evolve by heat bath dynamics, and equivalent sites of both systems are visited 
at the same time, with the same random number being used to determine the new state 
of each spin. Hence the interaction with the heat bath is identical for both systems. 
An interior site k of the system is defined to be damaged if the value of the spin at k 
in system A is different from the spin value at k in system B. In a nearest-neighbour 
model such as this, any damaged site must be connected to the initial damage by a 
continuous path of sites which have been damaged at least once in the time since the 
initial damage was introduced. The average damage between the two systems at 
equilibrium is a measure of the order parameter, which is non-zero below T, and 
vanishes at T,. Above T, the damage is localised at the border and is zero in the 
interior of the lattice, which reproduces the behaviour of the order parameter expected 
from the exact Ising solution for an infinite-sized system. This effect is difficult to 
observe with standard Monte Carlo tehcniques [ 6 ] .  Damage spreading is a very sensitive 
method for detecting differences that evolve between the systems due to slightly different 
initial conditions. 

In  this letter we show how damage spreading can be used to study dynamical 
properties. In particular we measure the dynamical exponent, z, for the d = 2 and 
d = 3 Ising models. 

The standard Monte Carlo method for measuring z is through the time dependence 
autocorrelation function for the magnetisation, m, in equilibrium: it is expected that 

( m  t ) )  - (m)’ - exp( - t /  7) (1) 

where 

and t is the time, 6 is the correlation length, and r is the relaxation time of the slowest 
mode of relaxation of the system in equilibrium. A possible problem with this approach 
is a clean and precise determination of (m(O)m( t ) )  for large t .  Figure 1 shows the 
typical behaviour of the autocorrelation function with time, as measured in units of 
Monte Carlo steps. Three regions are clearly observed; a relatively sharp decay, a 
second region where the decay is less sharp but well defined, and a third region where 
there is still some apparent decay but which is masked by oscillatory behaviour. Region 
I1 is usually used for extracting T, and a careful study [7] uses, for example, a 
two-parameter fit which assumes that the slowest and the next slowest modes are 
responsible for the decay of the time-dependent correlation function in region 11. 
Monte Carlo methods and various renormalisation group techniques support the values 
of z=2.14*0.05 ( d = 2 )  [8] and z=2.02*0.03 ( d = 3 ) .  

In this work we use damage spreading to measure the average time T?, taken for 
fluctuations to induce damage at the edge of an Ising system due to an initial central 
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Figure 1. Plot of the magnetisation autocorrelation function 

C(r)  = ( (m(O)m(r ) ) - (m)* ) / ( (m*) - (m) ' )  

for a d = 2 Ising model of linear size L = 3 1. The time f is measured in Monte Carlo steps. 

perturbation. Thus defined, T~ is the average time taken for a signal to propagate from 
the interior to the edge of the lattice at equilibrium. Since the transmission of informa- 
tion across the entire system is dominated by the slowest mode of relaxation, we assert 
that T,  is a measure of the characteristic time of the slowest mode of relaxation, and 
that T,  therefore scales with 6 in the same way as T in (2) .  For t<< T, the system is 
highly correlated to the initial equilibrium state, while for t >> T,  the system becomes 
decorrelated. We find that in d = 2 ,  T~ as measured above is of the same order as the 
value of T found by the conventional method, but in d = 3  we find that the T, values 
are smaller by a factor of 10 than the values of 7 reported by Wansleben and Landau 

If the effects of the central perturbation are transmitted by local means, that is a 
perturbed site can only affect its nearest neighbours, then z has a lower bound of unity. 
Hence z = 1 corresponds to the 'speed of light' for the transmission of information in 
the lattice. If damage can spread by non-local means then z may be less than unity 
[9], so that z < 1 corresponds to 'action at a distance'. If spin flips in the system are 
completely random and independent then z = 2 ,  which indicates that the damage moves 
through the lattice like a diffusive, random walk process. If there is a net repulsion 
between the damaged sites and the unaffected neighbours then z may be less than 2, 
indicating that the damage spreading process is subject to an effect analogous to the 
excluded volume repulsion experienced by a self-avoiding walk. Correspondingly, if 
there is a net attraction created by the damaged sites, then z may be greater than 2, 
which is reminiscent of the anomalous diffusion of a random walker on a percolating 
cluster. Our numerical results suggest that z is near the random walk limit in d = 3 ,  
while there is a net attraction caused by the damaged sites in d = 2, where z > 2. 

~ 7 1 .  
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The damage concept is a very sensitive means of detecting fluctuations. It is used 
in the following manner. The system evolves at T, to equilibrium and a replica is 
made of this equilibrium configuration. Then a central site a, is chosen and fixed 
permanently up in system A and permanently down in system B: 

(3) A uc = -a:= 1. 

The probability, p ( t )  of finding a typical spin in the up (t) state is 

where E ( f )  is the energy of the system when the site in question is up, and E ( 1 )  is 
the energy when this site is down. The same random number is used when equivalent 
sites in both systems are checked to determine their new states. Note that spins at 
equivalent sites in both replicas will flip together unless the perturbation has influenced 
their neighbours. When this occurs there is a finite probability for the damage to 
propagate. The damaged sites, i.e. those sites whose spins are in different states in the 
replicas, allow for the clean detection of a fluctuation, seeded from the initial damage. 
We monitor the following two quantities: the average time taken for a fluctuation to 
touch the edge of the lattice for the first time, and the actual number of damaged sites 
found in the system at this time. 

Srutics. We measured the fractal dimensionality of the damage created by keeping the 
boundaries permanently damaged, i.e. the spins of the boundary sites of system A are 
kept permanently up while those of system B are kept permanently down. The average 
internal damage is the magnetisation [5] and at T, this should scale with the fractal 
dimensionality df= d - f i /  v, with respect to L. We confirm the d = 2 results already 
reported in [5], i.e. df= 1.88Jt0.02, while in d = 3 we find df=2.49*0.05. There are 
very strong finite size effects in d = 3 and we note that df is strongly dependent on the 
range of L used in its determination. We have obtained the value df = 2.49 f 0.05 from 
extrapolating a plot of d,-(L) against 1 / a  for the finite systems considered here, to 
infinite L. This plot shows less curvature than that of d,-( L) against l/  L. 

Dynamics. We measured dynamic properties using damage initiated at a single central 
site in the system. The appropriate exponents, z, d,,, and a are defined by the following 
relations: 

(7,) - L' (&=cc at T =  T,) ( 5 )  

(s) - L d a -  (6) 

(S) - (T,)= = ( Te)d"" 

and 

(7) 

where (7,) is the average touching time, (s) the average damage at this time and L is 
the lattice size. Damage spreading has been used to determine the dynamic exponent, 
z for various models; the Kaufhnan model in two [2] and three [lo] dimensions, the 
Ising model with unnormalised Glauber or Metropolis dynamics [4], and for d = 2  
Ising systems with ferromagnetic and spin-glass interactions subjected to heat bath 
dynamics [3]. 



Letter to the Editor L457 

102 

10 

102 I I 

1 10 lo2 
( L  - 1 1 1 2  

Figure 2. ( a )  Plot of the average edge touching time, ( 7 , )  against (L-1)/2 (which is the 
distance from the central initial damage site to the edge of a system of size L), for king 
models with heat bath dynamics in d = 2 (0) and d = 3 (0). ( b )  Plot of the average number 
of damaged sites at the edge touching time, (s) against ( L -  1)/2 for d = 2 (0) and d = 3 ( 0 )  
king models. 
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Figure 2 ( a )  shows the average touching time for the d = 2 Ising model at T, as a 
function of L ( 1 0 s  L S  100). A least squares fit of the data leads to a value of 
z = 2.24*0.04. The average number of damaged sites at the touching time is shown 
in figure 2(b) and the least squares fit of the data leads to a slope of d,,, = 1.72k0.03. 
The exponent a, which we believe is there reported for the first time for the Ising 
model is a = 0.77 f 0.1 1 .  In d = 3 we have assumed a value [ 1 1 3  of T, = 4.51 1 6174 and 
the equivalent data are shown in figure 2(a)  and ( b ) .  A least squares fit of the data 
yields z=2.O2kOO.O3, d,,,= 1.85k0.05 and a =0.92*0.10. 

In order to observe the finite size effects, we examine also the propagation of 
damage in relatively large systems ( L  = 101 in d = 2, and L = 51 in d = 3), but now 
focusing on the time taken for damage to reach certain internal distances, L’, where 
L ‘ s ( L -  1)/2. The results we obtain with this technque are in good agreement with 
those from the finite size analysis above although the error bars are somewhat larger. 
The data for the different internal sizes L‘ in a particular trial are correlated so that 
far more independent trials are needed to provide accurate exponents. A reassuring 
feature is that finite size effects due to boundary conditions appear to be negligible. 

We have introduced a new method for the determination of the dynamic exponent 
z and have defined and measured an exponent a which describes the growth of a 
damage cloud with time. The d = 3 result is in good agreement with the values obtained 
by the traditional Monte Carlo approach and renormalisation group techniques. The 
value z = 2.24 in d = 2 is somewhat higher than the commonly accepted value of z = 2.13 
but agrees with some of the earlier results found by Achiam [12] and by Miyashita 
and Takano [ 131. The method is clean and precise in the determination of the touching 
time, but errors may occur due to an inadequate number of trials (500 trials for the 
large systems). In spite of this limitation the average quantities appear to be well 
converged and the value of z reported here may be considered with confidence. The 
exponent describing the growth of clusters is a = 0.77 ( d  = 2) and a = 0.92 ( d  = 3) .  
Intuitively one expects that d,,, = dr but this is not the case since damaged sites may 
‘heal’ and at the touching time there is rarely a spanning cluster. In fact, when measuring 
d,,,, we have sampled from the ensemble of all clusters (i.e. (s) = Z s’n,)  and hence 
d,,, = y / v  and not d f .  If we consider a line of damage spanning the lattice in one 
direction and measure the equilibrium damage at T, then the damage sites should 
scale with L as the fractal dimensionality, since we now have a spanning cluster by 
construction. It has also been indicated [ 141 that careful extrapolation of the mass of 
the actual damage at touching time does confirm that d,,, = d f .  
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